The Big Problem with Meta-Learning and How Bayesians Can Fix It

Chelsea Finn

training data

Braque Cezanne

test datapoint

By Braque or Cezanne?

How did you accomplish this?

Through previous experience.

How might you get a machine to accomplish this task?

Modeling image formation

Geometry

SIFT features, HOG features + SVM

Fine-tuning from ImageNet features
Domain adaptation from other painters

Fewer human priors, more data-driven priors

Greater success.

555

Can we explicitly learn priors from previous experience that lead to efficient downstream learning?

Can we learn to learn?

Outline

- 1. Brief overview of meta-learning
- 2. The problem: peculiar, lesser-known, yet ubiquitous
- 3. Steps towards a solution

How does meta-learning work? An example.

Given 1 example of 5 classes:

training data $\mathcal{D}_{ ext{train}}$

Classify new examples

test set \mathbf{x}_{test}

How does meta-learning work? An example.

training classes

Given 1 example of 5 classes:

meta-testing

training data $\mathcal{D}_{ ext{train}}$

test set \mathbf{x}_{test}

Classify new examples

How does meta-learning work?

One approach: parameterize learner by neural network

(Hochreiter et al. '91, Santoro et al. '16, many others)

How does meta-learning work?

Another approach: embed optimization inside the learning process

(Maclaurin et al. '15, Finn et al. '17, many others)

The Bayesian perspective

meta-learning <~> learning priors $p(\phi \mid \theta)$ from data

Outline

1. Brief overview of meta-learning

2. The problem: peculiar, lesser-known, yet ubiquitous

3. First steps towards a solution

How we construct tasks for meta-learning.

Randomly assign class labels to image classes for each task \longrightarrow Tasks are mutually exclusive.

Algorithms **must** use **training data** to infer label ordering.

What if label order is consistent?

Tasks are **non-mutually exclusive**: a single function can solve all tasks.

The network can simply learn to classify inputs, irrespective of \mathscr{D}_{tr}

The network can simply learn to classify inputs, irrespective of $\mathscr{D}_{\mathrm{tr}}$

What if label order is consistent?

 $\mathcal{T}_{ ext{test}}$

test set $\mathbf{x}_{ ext{test}}$

For new image classes: can't make predictions w/o \mathcal{D}_{tr}

NME Omniglot	20-way 1-shot	20-way 5-shot
MAML	7.8 (0.2)%	50.7 (22.9)%

Is this a problem?

- **No**: for image classification, we can just shuffle labels*
- **No**, if we see the same image classes as training (& don't need to adapt at meta-test time)
- But, yes, if we want to be able to adapt with data for new tasks.

Another example

If you tell the robot the task goal, the robot can **ignore** the trials.

Another example

Model can memorize the canonical orientations of the training objects.

Can we do something about it?

If tasks mutually exclusive: single function cannot solve all tasks (i.e. due to label shuffling, hiding information)

If tasks are non-mutually exclusive: single function can solve all tasks

multiple solutions to the meta-learning problem

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$$

One solution: memorize canonical pose info in heta & ignore $\mathscr{D}_i^{\mathsf{tr}}$

Another solution: carry no info about canonical pose in heta, acquire from $\mathscr{D}_i^{\mathrm{tr}}$

An entire spectrum of solutions based on how information flows.

Suggests a potential approach: control information flow.

If tasks are non-mutually exclusive: single function can solve all tasks

multiple solutions to the meta-learning problem

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$$

One solution: memorize canonical pose info in heta & ignore $\mathscr{D}_i^{ ext{tr}}$

Another solution: carry no info about canonical pose in heta, acquire from $\mathscr{D}_i^{ ext{tr}}$

An entire spectrum of solutions based on how information flows.

Meta-regularization one option: $\max I(\hat{\mathbf{y}}_{ts}, \mathcal{D}_{tr} | \mathbf{x}_{ts})$

minimize meta-training loss + information in θ $\mathcal{L}(\theta, \mathcal{D}_{meta-train}) + \beta D_{KL}(q(\theta; \theta_{\mu}, \theta_{\sigma}) || p(\theta))$

Places precedence on using information from \mathscr{D}_{tr} over storing info in θ . Can combine with your favorite meta-learning algorithm.

Omniglot without label shuffling: "non-mutually-exclusive" Omniglot

NME Omniglot	20-way 1-shot	20-way 5-shot
MAML	7.8~(0.2)%	50.7 (22.9)%
TAML	9.6~(2.3)%	67.9~(2.3)%
MR-MAML (W) (ours)	83.3 (0.8)%	94.1 (0.1)%

On **pose prediction** task:

Method	MAML	MR-MAML(W) (ours)	CNP	MR-CNP(W) (ours)
MSE	5.39 (1.31)	2.26 (0.09)	8.48 (0.12)	2.89 (0.18)

(and it's not just as simple as standard regularization)

CNP	CNP + Weight Decay	CNP + BbB	MR-CNP (W) (ours)
8.48 (0.12)	6.86 (0.27)	7.73 (0.82)	2.89 (0.18)

TAML: Jamal & Qi. Task-Agnostic Meta-Learning for Few-Shot Learning. CVPR'19

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. '19

Does meta-regularization lead to better generalization?

Let $P(\theta)$ be an arbitrary distribution over θ that doesn't depend on the meta-training data.

(e.g.
$$P(\theta) = \mathcal{N}(\theta; \mathbf{0}, \mathbf{I})$$
)

For MAML, with probability at least $1-\delta$,

$$er(\theta_{\mu},\theta_{\sigma}) \leq \frac{1}{n} \sum_{i=1}^{n} \hat{er}(\theta_{\mu},\theta_{\sigma},\mathcal{D}_{i},\mathcal{D}_{i}^{*}) + \left(\sqrt{\frac{1}{2(K-1)}} + \sqrt{\frac{1}{2(n-1)}}\right) \sqrt{D_{KL}(\mathcal{N}(\theta;\theta_{\mu},\theta_{\sigma}) \| P) + \log \frac{n(K+1)}{\delta}},$$
 generalization error on the error meta-training set

With a Taylor expansion of the RHS + a particular value of β --> <u>recover the MR MAML objective</u>.

Proof: draws heavily on Amit & Meier '18

Want to Learn More?

CS330: Deep Multi-Task & Meta-Learning Lecture videos coming out soon!

Working on Meta-RL?

Try out the Meta-World benchmark

